41 research outputs found

    Extension-based Semantics of Abstract Dialectical Frameworks

    Get PDF
    One of the most prominent tools for abstract argumentation is the Dung's framework, AF for short. It is accompanied by a variety of semantics including grounded, complete, preferred and stable. Although powerful, AFs have their shortcomings, which led to development of numerous enrichments. Among the most general ones are the abstract dialectical frameworks, also known as the ADFs. They make use of the so-called acceptance conditions to represent arbitrary relations. This level of abstraction brings not only new challenges, but also requires addressing existing problems in the field. One of the most controversial issues, recognized not only in argumentation, concerns the support cycles. In this paper we introduce a new method to ensure acyclicity of the chosen arguments and present a family of extension-based semantics built on it. We also continue our research on the semantics that permit cycles and fill in the gaps from the previous works. Moreover, we provide ADF versions of the properties known from the Dung setting. Finally, we also introduce a classification of the developed sub-semantics and relate them to the existing labeling-based approaches.Comment: To appear in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    Empirical Evaluation of Abstract Argumentation: Supporting the Need for Bipolar and Probabilistic Approaches

    Get PDF
    In dialogical argumentation it is often assumed that the involved parties always correctly identify the intended statements posited by each other, realize all of the associated relations, conform to the three acceptability states (accepted, rejected, undecided), adjust their views when new and correct information comes in, and that a framework handling only attack relations is sufficient to represent their opinions. Although it is natural to make these assumptions as a starting point for further research, removing them or even acknowledging that such removal should happen is more challenging for some of these concepts than for others. Probabilistic argumentation is one of the approaches that can be harnessed for more accurate user modelling. The epistemic approach allows us to represent how much a given argument is believed by a given person, offering us the possibility to express more than just three agreement states. It is equipped with a wide range of postulates, including those that do not make any restrictions concerning how initial arguments should be viewed, thus potentially being more adequate for handling beliefs of the people that have not fully disclosed their opinions in comparison to Dung's semantics. The constellation approach can be used to represent the views of different people concerning the structure of the framework we are dealing with, including cases in which not all relations are acknowledged or when they are seen differently than intended. Finally, bipolar argumentation frameworks can be used to express both positive and negative relations between arguments. In this paper we describe the results of an experiment in which participants judged dialogues in terms of agreement and structure. We compare our findings with the aforementioned assumptions as well as with the constellation and epistemic approaches to probabilistic argumentation and bipolar argumentation

    Strategic Argumentation Dialogues for Persuasion: Framework and Experiments Based on Modelling the Beliefs and Concerns of the Persuadee

    Get PDF
    Persuasion is an important and yet complex aspect of human intelligence. When undertaken through dialogue, the deployment of good arguments, and therefore counterarguments, clearly has a significant effect on the ability to be successful in persuasion. Two key dimensions for determining whether an argument is good in a particular dialogue are the degree to which the intended audience believes the argument and counterarguments, and the impact that the argument has on the concerns of the intended audience. In this paper, we present a framework for modelling persuadees in terms of their beliefs and concerns, and for harnessing these models in optimizing the choice of move in persuasion dialogues. Our approach is based on the Monte Carlo Tree Search which allows optimization in real-time. We provide empirical results of a study with human participants showing that our automated persuasion system based on this technology is superior to a baseline system that does not take the beliefs and concerns into account in its strategy.Comment: The Data Appendix containing the arguments, argument graphs, assignment of concerns to arguments, preferences over concerns, and assignment of beliefs to arguments, is available at the link http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/unistudydata.zip The code is available at https://github.com/ComputationalPersuasion/MCC

    Understanding the abstract dialectical framework

    Get PDF
    Among the most general structures extending the framework by Dung are the abstract dialectical frameworks (ADFs). They come equipped with various types of semantics, with the most prominent – the labeling–based one – being analyzed in the context of computational complexity, instantiations and software support. This makes the abstract dialectical frameworks valuable tools for argumentation. However, there are fewer results available concerning the relation between the ADFs and other argumentation frameworks. In this paper we would like to address this issue by introducing a number of translations from various formalisms into ADFs. The results of our study show the similarities and differences between them, thus promoting the use and understanding of ADFs. Moreover, our analysis also proves their capability to model many of the existing frameworks, including those that go beyond the attack relation. Finally, translations allow other structures to benefit from the research on ADFs in general and from the existing software in particular

    Empirical methods for modelling persuadees in dialogical argumentation

    Get PDF
    For a participant to play persuasive arguments in a dialogue, s/he may create a model of the other participants. This may include an estimation of what arguments the other participants find believable, convincing, or appealing. The participant can then choose to put forward those arguments that have high scores in the desired criteria. In this paper, we consider how we can crowd-source opinions on the believability, convincingness, and appeal of arguments, and how we can use this information to predict opinions for specific participants on the believability, convincingness, and appeal of specific arguments. We evaluate our approach by crowd-sourcing opinions from 50 participants about 30 arguments. We also discuss how this form of user modelling can be used in a decision-theoretic approach to choosing moves in dialogical argumentation

    Updating belief in arguments in epistemic graphs

    Get PDF
    Epistemic graphs are a recent generalization of epistemic probabilistic argumentation. Relations between arguments can be supporting, attacking, as well as neither supporting nor attacking. These interdependencies are represented by epistemic constraints, and the semantics of epistemic graphs are given in terms of probability distributions satisfying these constraints. We investigate the behaviour of epistemic graphs in a dynamic setting where a given distribution can be updated once new constraints are presented. Our focus is on update methods that minimize the change in probabilistic beliefs. We show that all methods satisfy basic commonsense postulates, identify fragments of the epistemic constraint language that guarantee the existence of well-defined solutions, and explain how the problems that arise in more expressive fragments can be treated either automatically or by user support. We demonstrate the usefulness of our proposal by considering its application in computational persuasion
    corecore